
DIOPHANTINE ANALYSIS AROUND [1, 2, 3, . . . ]

CARSTEN ELSNER AND CHRISTOPHER ROBIN HAVENS

Abstract. The transcendence of the regular infinite continued fraction z := [1, 2, 3, 4, 5, . . . ] was first
proven by C.L.Siegel in 1929. The value of z is a ratio of the values of modified Bessel functions. In this
paper our diophantine analysis around z takes its starting point with its rational convergents and deals
with an asymptotic approximation formula for z and with the construction of a sequence of quadratically
irrational approximations using these convergents. Finally, we study various error sums for z which are
also defined by the rational convergents.

Dedicated to the memory of Professor Eduard Wirsing (1931 - 2022)

1. Introduction of the Zopf-number

In this paper we study a special number whose partial denominators form one of the simplest arithmetic
sequences, namely 1, 2, 3, . . . . Indeed, in 1929 Siegel [8] laid the groundwork for our study by treating the
subject of our work as a special case among a family of quasi-periodic continued fractions as a ratio of
modified Bessel functions of the first kind,

Ia/b(2/b)

Ia/b+1(2/b)
=
[
a+ kb

]∞
k=0

,

where a, b ∈ Z with b > 0 and a + b > 0. With the method later named after him, values of analytic
functions which satisfy a linear differential equation and whose coefficients fulfill analytic and algebraic
conditions in their Taylor expansion can be proved to be transcendental. In this paper we restrict our
analytic and diophantine investigations only to the special continued fraction

z := 1 +
1

2 +
1

3 +
1

4 +...

= [1, 2, 3, 4, 5, . . . ] .

In Section 2, we establish an asymptotic estimation around the error of approximation of z by its rational
convergents pn/qn. We then introduce a new concept, called the quadratic convergents of an irrational
number ξ.

Let ξ = [a0, a1, a2, . . . ] be an irrational number where a0 ≥ 1. For n ≥ 1, the quadratic convergents
are given by

Qn(ξ) :=
[
a0, a1, . . . , an−1

]
,

with characteristic polynomial qn−1X
2 − (pn−1 − qn−2)X − pn−2 = 0. Our results in Section 3 constitute

very few of the myriad interesting properties of the quadratic convergents for the continued fraction
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z = [ k ]∞k=1, for which we will henceforth refer to as the ”Zopf-number”. The name, translating to ”twist”,
has been adopted by the authors because of the twist of N around unity after taking Gn := gcd(qn−1, pn−1−
qn−2, pn−2) through positive values of n, and for the way its linear and quadratic convergents weave around
the real line at z. Specifically,{

Gn
}∞
n=1

= 1, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, . . . .

We then move into Section 4 and establish results on error sums of the Zopf-number in terms of Bessel
functions.

2. Rational convergents of the Zopf-number

Theorem 1. Let pn/qn be the n-th convergent of the Zopf-number z. Then we have∣∣∣z− pn
qn

∣∣∣ ∼ ln ln(qn)

q2n ln(qn)
.

Proof. By setting z = [a0, a1, a2, . . . ], we have an = n+1 for n ≥ 0. Then by the well known inequalities
for convergents of an irrational number, we have

1

(n+ 4)q2n
≤ 1

qn(qn + qn+1)
<
∣∣∣z− pn

qn

∣∣∣ < 1

qnqn+1
≤ 1

(n+ 2)q2n
. (1)

From the recursion formula for the denominators qn of the convergents, we now get the following inequal-
ities:

(n+ 2)qn ≤ qn+1 ≤ (n+ 3)qn (n ≥ 0) , (2)

since
(n+ 2)qn = an+1qn ≤ qn+1 ≤ an+1qn + qn = (1 + an+1)qn = (n+ 3)qn .

Using the induction principle and (2), lower and upper bounds for qn depending only on n can be proved:

(n+ 1)! ≤ qn ≤ (n+ 2)! (n ≥ 0) . (3)

For n = 0 the inequalities in (3) are true because of 1 ≤ q0 = 1 ≤ 2. Next, let (3) be true for some integer
n ≥ 0. Using both (2) and the induction hypothesis twice, we obtain on the one side,

(n+ 2)! = (n+ 2)(n+ 1)! ≤ (n+ 2)qn ≤ qn+1 ,

and on the other side,
qn+1 ≤ (n+ 3)qn ≤ (n+ 3)(n+ 2)! = (n+ 3)! .

Thus (3) is shown.
From Stirling’s formula we have the asymptotic relation

ln(n!) ∼ n ln(n) , (4)

which follows from [1, Eq. 6.1.41]. From (3), if we first take logarithms and then multiply on both ends
by 1 = ln(n!)/ ln(n!), we have(

1 +
ln(n+ 1)

ln(n!)

)
ln(n!) ≤ ln(qn) ≤

(
1 +

ln(n+ 1)(n+ 2)

ln(n!)

)
ln(n!) (n ≥ 2) . (5)

Here, both fractions inside the parentheses tend to zero when n increases, which follows from (4). Com-
bining (4) and (5), we find two functions ε1(n) and ε2(n), such that

lim
n→∞

εk(n) = 1 (k = 1, 2) , (6)

and
ε1(n)n ln(n) ≤ ln(qn) ≤ ε2(n)n ln(n) (n ≥ 2) . (7)

We now take logarithms of the inequalities in (7):

ln
(
ε1(n)

)
+ ln(n) + ln ln(n) ≤ ln ln(qn) ≤ ln

(
ε2(n)

)
+ ln(n) + ln ln(n) (n ≥ 3) . (8)
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In the next step, we combine the inequalities in (7) and (8) to form:

ε1(n) ln(n)

ln
(
ε2(n)

)
+ ln(n) + ln ln(n)

≤ ln(qn)

n ln ln(qn)
≤ ε2(n) ln(n)

ln
(
ε1(n)

)
+ ln(n) + ln ln(n)

(n ≥ 3) .

Taking (6) into account, both the left and right-hand fraction tend to 1 for increasing n. This proves

ln(qn)

n ln ln(qn)
∼ 1 . (9)

Finally, we access the inequalities in (1) and rearrange them in an equivalent form:

ln(qn)

n ln ln(qn)
· n

n+ 4
<

q2n ln(qn)

ln ln(qn)
·
∣∣∣z− pn

qn

∣∣∣ < ln(qn)

n ln ln(qn)
· n

n+ 2
(n ≥ 3) .

By (9) we conclude that

lim
n→∞

( q2n ln(qn)

ln ln(qn)
·
∣∣∣z− pn

qn

∣∣∣ ) = 1 ⇐⇒
∣∣∣z− pn

qn

∣∣∣ ∼ ln ln(qn)

q2n ln(qn)
.

This completes the proof of the theorem. �

For the sequence of the numbers qn, see A001053 in OEIS.

3. Quadratic convergents of the Zopf-number

Let

ξ := [a0, a1, a2, . . . ]

be an irrational number greater than 1, such that a0 ≥ 1. Again, we denote the (rational) convergents of
ξ by pm/qm, for m ≥ 0. Then,

1

(2 + am+1)q2m
<
∣∣∣ ξ − pm

qm

∣∣∣ < 1

am+1q2m
(m ≥ 0) . (10)

Both inequalities in (10) result from inequalities (8) and (12) in [5, §13] and from the recurrence formula
qm+1 = am+1qm + qm−1. Let the quadratic convergents of ξ be given by

Qn(ξ) := [ a0, a1, . . . , an−1 ]

for n ≥ 1.

Proposition 1. We have for every integer n ≥ 1,

max
{

0,
( 1

2 + an
− 1

a0

)
,
( 1

2 + a0
− 1

an

)}
· 1

q2n−1
<
∣∣ξ −Qn(ξ)

∣∣ < ( 1

a0
+

1

an

)
· 1

q2n−1
. (11)

Proof. We have

Qn(ξ) = [ a0, a1, . . . , an−1,Qn(ξ) ] .

Therefore, the rationals
p0
q0
,
p1
q1
, . . . ,

pn−1
qn−1

are convergents of ξ as well as convergents of Qn(ξ). Hence, we obtain four inequalities,

1

(2 + an)q2n−1
<
∣∣∣ ξ − pn−1

qn−1

∣∣∣ < 1

anq2n−1
, (12)

1

(2 + a0)q2n−1
<
∣∣∣Qn(ξ)− pn−1

qn−1

∣∣∣ < 1

a0q2n−1
. (13)
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We now link these inequalities twice with the triangle inequalities. On the one side, we have∣∣ξ −Qn(ξ)
∣∣ =

∣∣∣( ξ − pn−1
qn−1

)
+
(pn−1
qn−1

−Qn(ξ)
)∣∣∣ ≤ ∣∣∣ ξ − pn−1

qn−1

∣∣∣+
∣∣∣Qn(ξ)− pn−1

qn−1

∣∣∣
(12),(13)
<

( 1

a0
+

1

an

)
· 1

q2n−1
, (14)

and on the other side, ∣∣ξ −Qn(ξ)
∣∣ =

∣∣∣ ( ξ − pn−1
qn−1

)
+
( pn−1
qn−1

−Qn(ξ)
) ∣∣∣

≥ max
{ ∣∣∣ ξ − pn−1

qn−1

∣∣∣− ∣∣∣Qn(ξ)− pn−1
qn−1

∣∣∣ , ∣∣∣Qn(ξ)− pn−1
qn−1

∣∣∣− ∣∣∣ ξ − pn−1
qn−1

∣∣∣ }
(12),(13)
> max

{( 1

2 + an
− 1

a0

) 1

q2n−1
,
( 1

2 + a0
− 1

an

) 1

q2n−1

}
= max

{( 1

2 + an
− 1

a0

)
,
( 1

2 + a0
− 1

an

)}
· 1

q2n−1
. (15)

(14) and (15) complete the proof of the Proposition. �

3.1. An application to the Zopf-number.

Proposition 2. We have for every integer n ≥ 1 with |a0 − an| ≥ 3,∣∣ξ −Qn(ξ)
∣∣ > max

{ 1

(2 + a0)(3 + a0)
,

1

(2 + an)(3 + an)

}
· 1

q2n−1
. (16)

Corollary 1. For the Zopf-number z we have the inequalities

1

12q2n−1
<
∣∣z−Qn(z)

∣∣ < 5

4q2n−1
(n ≥ 3) . (17)

Proof of Corollary 1. The number z is such that an = n+ 1, and so |a0 − an| = n. The lower bound in
(17) then follows directly from (16), The upper bound in (17) is a consequence of the right inequality in
(11). The latter is because of n ≥ 3 and

1

a0
+

1

an
=
n+ 2

n+ 1
≤

5

4
.

This proves the corollary. �

Proof of Proposition 2. We assume the condition |a0 − an| ≥ 3.
Case 1. Let a0 − an ≥ 3.
Then, we obtain

a0 ≥ 3 + an ⇐⇒ − 1

a0
≥ − 1

3 + an

⇐⇒ 1

2 + an
− 1

a0
≥ 1

2 + an
− 1

2 + an
· 2 + an

3 + an
=

1

2 + an
· 1

3 + an
. (18)
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Case 2. Let an − a0 ≥ 3.
Interchanging a0 and an in Case 1, we obtain from (18),

1

2 + a0
− 1

an
≥ 1

2 + a0
· 1

3 + a0
. (19)

Finally, (16) follows from (18), (19), and from the left inequality in (11) of Proposition 1. �

Proposition 3. Let n ≥ 1 with an ≥ 2 + a0. Then we have

ξ −Qn(ξ)

{
> 0 for n ≡ 0 (mod 2) ,
< 0 for n ≡ 1 (mod 2) .

(20)

Proof. pn−1/qn−1 is a common rational convergent of ξ and Qn(ξ). Depending on whether n is odd or
even, we obtain from (10) with m = n− 1 and a0 = an,

(−1)n−1Qn(ξ) + (−1)n
pn−1

qn−1
>

1

(2 + a0)q2n−1
. (21)

Similarly, from (10) we obtain ∣∣∣ξ − pn−1

qn−1

∣∣∣ < 1

anq2n−1
. (22)

Setting Q(n) := (−1)n−1Qn(ξ) + (−1)nξ, this gives

Q(n) = (−1)n−1Qn(ξ) + (−1)n
pn−1

qn−1
+ (−1)n

(
ξ −

pn−1

qn−1

)
≥ (−1)n−1Qn(ξ) + (−1)n

pn−1

qn−1
−
∣∣∣ξ − pn−1

qn−1

∣∣∣
(21),(22)
>

1

(2 + a0)q2n−1
−

1

anq2n−1
≥

1

(2 + a0)q2n−1
−

1

(2 + a0)q2n−1
= 0 .

This proves the inequalities in (21) and completes the proof of the proposition. �

Theorem 2. The quadratic convergents Qn(z) of the Zopf-number z satisfy the inequalities

Q2(z) < Q4(z) < Q6(z) < · · · < z < · · · < Q7(z) < Q5(z) < Q3(z) < Q1(z) , (23)

where
lim
n→∞

Qn(z) = z . (24)

Proof. (24) follows immediately from Corollary 1, so it remains to prove (23). From the regular
continued fraction expansion of the Zopf-number, we have that an = n+ 1 for n ≥ 0. Thus, an = n+ 1 ≥
3 = 2 + a0 is fulfilled for n ≥ 2. Then, Proposition 3 yields

Q2m(z) < z < Q2m+1(z) (m ≥ 1) . (25)

Next, we prove that ∣∣z−Qn+1(z)
∣∣ < ∣∣z−Qn(z)

∣∣ (n ≥ 3) . (26)

For this purpose, note that

4 ≤ n+ 1 = an < [ an, an−1, . . . , a1 ] =
qn
qn−1

.

Consequently, we have q2n > 16q2n−1 > 15q2n−1, or

5

4q2n
<

1

12q2n−1
(n ≥ 3) .
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Finally, we apply Corollary 1 twice, namely for n+ 1 and for n. This gives∣∣z−Qn+1(z)
∣∣ < 5

4q2n
<

1

12q2n−1
<
∣∣z−Qn(z)

∣∣ (n ≥ 3) .

This proves (26). Combining (25) and (26), it turns out that

Q4(z) < Q6(z) < · · · < z < · · · < Q7(z) < Q5(z) < Q3(z) .

In order to complete the proof of the theorem, we have to check the two inequalities

Q2(z) < Q4(z) ,

Q3(z) < Q1(z)

numerically. We have

Q1(z) =
1 +
√

5

2
= 1.618033 . . . , Q2(z) =

1 +
√

3

2
= 1.366025 . . . ,

Q3(z) =
4 +
√

37

7
= 1.440394 . . . , Q4(z) =

9 + 2
√

39

15
= 1.432666 . . . .

The theorem is proven. �

Proposition 3 and Theorem 2 show that the approximation of z with Qn(z) follows the same regularities
as the approximation of any real irrational number with its rational convergents, c.f. (5) and (6) in [5,
§13].

3.2. Expressing quadratic convergents by numerators and denominators of rational conver-
gents. Let ξ := [a0, a1, a2, . . . ] be an irrational number greater than 1, such that a0 ≥ 1.

Proposition 4. We have for all n ≥ 1,

Qn(ξ) =
pn−1 − qn−2 +

√
(pn−1 − qn−2)2 + 4qn−1pn−2

2qn−1
, (27)

where p−1 := 1 and q−1 := 0.

Proof. From Qn(ξ) = [ a0, a1, . . . , an−1,Qn(ξ) ] we obtain the identity

Qn(ξ) =
pn−1Qn(ξ) + pn−2
qn−1Qn(ξ) + qn−2

(n ≥ 1) ,

and therefore,
qn−1Q2

n(ξ)−
(
pn−1 − qn−2

)
Qn(ξ)− pn−2 = 0 . (28)

(27) now follows directly by applying the quadratic formula to (28). �

3.3. On the approximation of the Zopf-number by quadratic convergents.

For ξ = z, we know by (28) that Qn(z) is a root of the polynomial

Pn(X) := qn−1X
2 − (pn−1 − qn−2)X − pn−2 , (29)

where p−1 := 1 and q−1 := 0. Since 7/5 < z < 3/2 we have the inequalities

0 <
7

5
qm < pm <

3

2
qm (m ≥ 2) . (30)

Furthermore we know from (2) in Section 2 that

(m+ 2)qm ≤ qm+1 ≤ (m+ 3)qm (m ≥ 0) . (31)

Denote the canonical height of a polynomial P by H(P ) and the height of an algebraic number α by
H(α).
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Lemma 1. The height of the polynomial Pn from (29) is given by

H
(
Pn
)

= pn−1 − qn−2 (n ≥ 1) . (32)

Proof. First, let n ≥ 3.
We obtain from (30) (with m = n− 1 ≥ 2) and from (31) (with m = n− 2 ≥ 1),

pn−1 − qn−2
(31)

≥ pn−1 −
qn−1
n

(30)
>

7

5
qn−1 −

qn−1
n

=
( 7

5
− 1

n

)
qn−1 > qn−1 . (33)

Additionally we have

qn−1
(31)

≥ nqn−2
(30)
>

2

3
npn−2 ≥ pn−2 . (34)

The assertion of the lemma for n ≥ 3 follows from (33) and (34). Also for n = 1 and n = 2 the statement
is correct, because

H
(
P1

)
= H

(
X2 −X − 1

)
= 1 = 1− 0 = p0 − q−1 ,

H
(
P2

)
= H

(
2X2 − 2X − 1

)
= 2 = 3− 1 = p1 − q0 .

The lemma is proven. �

Lemma 2. We have for all even integers n ≥ 2,

Gn = gcd
(
qn−1, pn−1 − qn−2, pn−2

)
≡ 0 mod

( n
2

)
. (35)

But it seems that much more is true.

Conjecture 1. We have for all n ≥ 1,

Gn =

{
1 if n ≡ 1 (mod 2) ,
n/2 if n ≡ 0 (mod 2) .

We will prove Lemma 2 below in Section 3.4.
Now, from Lemma 1 and 2 we have for every even integer n ≥ 2,

H
(
Qn(z)

)
� 2zqn−1

n
, (36)

since the difference pn−1 − qn−2 in (32) has a simple asymptotic expansion

pn−1 − qn−2 = qn−1 ·
( pn−1
qn−1

− qn−2
qn−1

)
∼ zqn−1 , (37)

and, consequently, pn−1 − qn−2 � zqn−1 . Note that we have the limits

lim
n→∞

pn−1
qn−1

= z

and
lim
n→∞

qn−2
qn−1

= lim
n→∞

[ 0, n, n− 1, . . . , 2 ] = 0 .

For even n the bound for H
(
Qn(z)

)
in (36) follows with Lemma 2 after multiplying (37) with 2/n, so

that 2(pn−1 − qn−2)/n ∈ Z.
We recall the inequalities from Corollary 1. The inequality in the following theorem results from the
right-hand inequality in (17) and from (36).

Theorem 3. We have for increasing even numbers n,∣∣ z−Qn(z)
∣∣ � 1

n2H2
(
Qn(z)

) . (38)
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In terms of evaluating the approximation quality of |z−Qn(z)| with the heights H(Qn(z)) the quadratic
convergents Qn(z) approximate z better than the rational numbers pn/qn for even n, which admit only
an approximation quality of the form∣∣∣ z− pn

qn

∣∣∣ � 1

nq2n
� 1

nH2(pn/qn)

(cf. formula (1) in Section 2), where H(pn/qn) = pn > qn, because Pn(X) = qnX−pn and gcd(pn, qn) = 1.

Let n be an even number. With formula (9) we can justify the second of the following inequalities:

n > n− 1 � ln(qn−1)

ln ln(qn−1)
.

The function ln(x)/ ln ln(x) is strictly increasing for x ≥ ee = 15.154 . . . . Let C > 0 be a constant in
(36) such that H

(
Qn(z)

)
< 2Czqn−1/n. Now, choosing n sufficiently large, we have ee < H

(
Qn(z)

)
<

2Czqn−1/n < qn−1, and obtain

n � ln(2Czqn−1/n)

ln ln(2Czqn−1/n)
>

ln
(
H(Qn(z))

)
ln ln

(
H(Qn(z))

)
for all large even n. This bound is now used to further enlarge the right-hand side in (38) by substituting
for n.

Corollary 2. For all large even integers n we have∣∣ z−Qn(z)
∣∣ � (

ln ln
(
H(Qn(z))

)
ln
(
H(Qn(z))

)
H(Qn(z))

)2

.

3.4. Proof of Lemma2.

Lemma 3. Let n ≥ 2 be an even integer. Then we have

qn−1 ≡
{
n/2 (mod n) , if n ≡ 0 (mod 4) ,
0 (mod n) , if n ≡ 2 (mod 4) .

(39)

pn−1 ≡ qn−2 ≡
{
n/2 + 1 (mod n) , if n ≡ 4 (mod 8) ,

1 (mod n) , if n ≡ 0, 2, 6 (mod 8) .
(40)

pn−2 ≡
{

0 (mod n) , if n ≡ 0 (mod 4) ,
n/2 (mod n) , if n ≡ 2 (mod 4) .

(41)

We prove this lemma in Section 3.5. But we can use Lemma 3 to complete the proof of Lemma 2: From
(40) we conclude on pn−1 − qn−2 ≡ 0 (mod n), which together with (39) and (41) implies Lemma 2. �

3.5. Proof of Lemma3. We demonstrate the arguments for the congruences in (40), the remaining
congruences in (39) and (41) can be proven similarly. Before starting to prove (40), we need explicit
formulas for pn and qn, which have the form of sums over binomial coefficients.

Lemma 4. We have for all n ≥ 0,

pn =

b(n+1)/2c∑
k=0

(n− 2k + 1)!

(
n− k + 1

k

)2

, (42)

qn =

bn/2c∑
k=0

(n− 2k)!

(
n− k
k

)(
n− k + 1

k + 1

)
. (43)
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Proof. Lemma 4 states a special case for Corollary 7 in [4]. �

With the numbers pi and qi for i = 0, 1, 2, 3 obtained from Lemma 4, we check that (40) holds for n = 2
and n = 4. From now on we write n′ instead of n/2 for even integers n ≥ 6.

Now we prove the two congruences in (40) for the numbers pn−1 and qn−2. First we treat pn−1 using
(42):

pn−1 =
n′∑
k=0

(n− 2k)!

(
n− k
k

)2

=:
n′∑
k=0

ck (44)

with

ck =
(n− k)!

k!

(
n− k
k

)
=

(n′ − 3)! · (n′ − 2)(n′ − 1)n′ · (n′ + 1) . . . (n− k)

k!

(
n− k
k

)
. (45)

Case 1.1. 0 ≤ k ≤ n′ − 3. Note that n ≥ 6 implies n′ − 3 ≥ 0.
(i) By the condition of Case 1.1, k! divides (n′ − 3)!.
(ii) Because of (n′ − 2)(n′ − 1) ≡ 0 (mod 2) we have (n′ − 2)(n′ − 1)n′ ≡ 0 (mod n).
(iii) From (45) we find: n− k ≥ n′ + 3.
Altogether we obtain

ck ≡ 0 (mod n) . (46)

Case 1.2. k = n′ − 2. Now ck has the form

cn′−2 = 4!

(
n′ + 2

n′ − 2

)2

=
(n+ 4)2(n+ 2)2n(n− 2)2

3 · 211
n . (47)

(i) 3 divides (n+ 4)(n+ 2)n.
(ii) Exactly one of the four numbers n+ 4, n+ 2, n, n− 2 is divisible by 23, another by 22, the remaining

two are each divisible by 2. In total, 3 · 211 divides (n+ 4)2(n+ 2)2n(n− 2)2. So for (47) we get

cn′−2 ≡ 0 (mod n) . (48)

Case 1.3. k = n′ − 1.

cn′−1 = 2!

(
n′ + 1

n′ − 1

)2

=
(n+ 2)2n

25
n . (49)

Case 1.3.1. n ≡ 4 (mod 8). Then, 24 divides (n+ 2)2n, but this does not hold for 25. Thus, (49) yields

cn′−1 ≡
n

2
(mod n) . (50)

Case 1.3.2. n ≡ 0, 2, 6 (mod 8). Under this assumption, 25 divides (n+ 2)2n, and so we get for (49)

cn′−1 ≡ 0 (mod n) . (51)

Case 1.4. k = n′.

cn′ = 0!

(
n′

n′

)
= 1 . (52)

Finally, (40) for pn−1 follows from (44), (46), (48), (50), (51), and (52).

The following considerations will show that the same congruences hold for qn−2. From formula (43) we
obtain

qn−2 =
n′−1∑
k=0

(n− 2k − 2)!

(
n− k − 2

k

)(
n− k − 1

k + 1

)
=:

n′−1∑
k=0

dk . (53)
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Case 2.1. 0 ≤ k ≤ n′ − 3. We have

dk =
(n− k − 2)!

k!

(
n− k − 1

k + 1

)

=
(n′ − 3)! · (n′ − 2)(n′ − 1)n′ · (n′ + 1) · · · (n− k − 2)

k!

(
n− k − 1

k + 1

)
. (54)

Note that n− k − 2 ≥ n′ + 1. As above in Case 1.1, the hypothesis of Case 2.1 guarantees

dk ≡ 0 (mod n) . (55)

Case 2.2. k = n′ − 2. We obtain

dn′−2 = 2!

(
n′

n′ − 2

)(
n′ + 1

n′ − 1

)
=

(n− 2)n(n+ 2)

25
n . (56)

Case 2.2.1. n ≡ 4 (mod 8). Although 24 divides (n− 2)n(n+ 2), this does not hold for 25. Thus, (56)
yields

dn′−2 ≡
n

2
(mod n) . (57)

Case 2.2.2. n ≡ 0, 2, 6 (mod 8). Now, 25 divides (n− 2)n(n+ 2). We obtain from (56),

dn′−2 ≡ 0 (mod n) . (58)

Case 2.3. k = n′ − 1. This results in

dn′−1 = 0!

(
n′ − 1

n′ − 1

)(
n′

n′

)
= 1 . (59)

Finally, (40) for qn−2 follows from (53), (55), (57), (58), and (59).

This completes the proof of (40) in Lemma 3. �

4. Error sums of the Zopf-number

4.1. Preliminaries. Let a ≥ 0 and b ≥ 1 be integers. We define the numbers

zba := a+ 1 +
b|
|a+ 2

+
b|
|a+ 3

+
b|
|a+ 4

+ . . . (60)

by their irregular (b > 1) or regular (b = 1) continued fraction expansion. In particular, z1a = [a+ 1, a+
2, a+ 3, . . . ], and z = z10 = [1, 2, 3, . . . ] gives the Zopf-number. The numbers

E
(
zba
)

:=

∞∑
m=0

(−1)m
(
zbaqm − pm

)
(61)

E∗
(
zba
)

:=
∞∑
m=0

(
zbaqm − pm

)
(62)

Efac
(
zba
)

:=

∞∑
m=0

(−1)m

m!

(
zbaqm − pm

)
(63)

E∗fac
(
zba
)

:=

∞∑
m=0

1

m!

(
zbaqm − pm

)
(64)

are called error sums of z, where pm/qm are the convergents obtained from the regular or irregular
continued fraction of zba. Both, the numerators pm and denominators qm satisfy the recurrence relation

um+2 = (m+ a+ 3)um+1 + bum (m ≥ 0) (65)
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with
p0 = a+ 1 , q0 = 1 ,
p1 = a2 + 3a+ b+ 2 , q1 = a+ 2 ,
p2 = a3 + 6a2 + 2ab+ 11a+ 4b+ 6 , q2 = a2 + 5a+ b+ 6 ,

 (66)

see [5, § 2, (12)]. Let us first consider two general types of error sums, namely the E and the E∗ function:

E∗
(
ξ
)

:=
∞∑
m=0

(
ξqm − pm

)
, E

(
ξ
)

:=
∞∑
m=0

∣∣ξqm − pm∣∣ . (67)

The sums extend in each case over all convergents pm/qm of a real number ξ. The theory of these two
functions shows us that they have a fractal appearance, [2], [3]. The function E∗ was first studied in more
detail by J.N.Ridley and G.Petruska in 2000, [7]. In 1992 Petruska had already used a special irrational
number and its errorsum E∗ to explicitly construct a so-called q-series with a given radius of convergence
greater than 1, [6].
We list some properties of these error sums.

1.) E(ξ) and E∗(ξ) are continuous functions at every irrational point ξ, and discontinuos functions at
every rational point ξ.

2.) The range of the function E is the set of all real numbers between zero and the Golden Number
G = (1 +

√
5)/2, whereas the range of the function E∗ is the set of all real numbers between 0 and

1.
3.) Both functions are periodic with period 1.
4.) The error sums satisfy simple functional equations,

E∗(ξ) + E∗(1− ξ) =

{
1− ξ if 0 < ξ < 1/2 ,
ξ if 1/2 < ξ < 1 ,

E(ξ)− E(1− ξ) =

{
ξ − 1 if 0 < ξ < 1/2 ,
ξ if 1/2 < ξ < 1 .

5.) From 1.) and 2.) it follows that E(ξ) and E∗(ξ) are Lebesgue integrable. We have∫ 1

0
E∗(α) dα =

3

8
,

∫ 1

0
E(α) dα =

3ζ(2) ln 2

2ζ(3)
− 5

8
=

π2 ln 2

4ζ(3)
− 5

8
= 0.79778798 . . . .

The functions

f(x) :=
∞∑
m=0

(zbaqm − pm) · xm (68)

and

g(x) :=

∞∑
m=0

(zbaqm − pm) · x
m

m!
(69)

are called ordinary generating functions and exponential generating functions, respectively, of the errors
zbaqm − pm.
From here we make use of Bessel functions, where µ ≥ 0 is an integer.

Jµ(x) : Bessel function of the first kind ,
Yµ(x) : Bessel function of the second kind ,
Iµ(x) : modified Bessel function of the first kind ,

Kµ(x) := Γ(µ+ 1)
( x

2

)−µ
Jµ(x) .
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For example, we have

zba =
√
b · Ia(2

√
b)

Ia+1(2
√
b)
. (70)

For real numbers t tending to infinity, we have the asymptotic behavior

Jµ(t) ∼
√

2

πt
cos
(
t− µπ

2
− π

4

)
. (71)

The following relationships between Bessel functions will play an essential role in our investigations.

Lemma 5. (i) Let x ∈ C. The relationship between Iµ(x) and Jµ(x) is given by

Iµ(x) = e−iπµ/2Jµ
(
eiπ/2x

)
. (72)

(ii) We have the recurrence relation

2µ

x
Iµ(x) = Iµ−1(x)− Iµ+1(x) (µ ≥ 1) . (73)

(iii) Let β, x ∈ C. Then we have

d

dx

(
x−µIµ(βx)

)
= βx−µIµ+1(βx) . (74)

(iv) We have for µ ≥ 1,

I ′µ(x) =
1

2

(
Iµ+1(x) + Iµ−1(x)

)
. (75)

Proof. See [1], [10]. �

4.2. Main Results. For the error sums of zbaqm − pm, the exponential generating function g(x) from
(69) turns out to be the theoretically more accessible object than the ordinary generating function f(x)
in (68), albeit with the restriction to a = 0. However, zb0 and zba are related only by one explicitly given
linear fractional transformtion, namely

zba =
bzb0qa−2 − bpa−2
pa−1 − zb0qa−1

,

and therefore the restriction to a = 0 is immaterial. So we start by listing results for g(x) for the error
sums formed with zb0.
Formula numbers marked with an asterisk refer to formulas obtained using MAPLE. For the sake of
brevity, we also omit the proofs of these formulas that can be done with known standard methods of real
analysis. All other unmarked formula numbers refer to statements that are either evident or proven.

Theorem 4. Let a = 0 and b ≥ 1. The function g(x) satisfies the differential equation

(x− 1)g′′ + 3g′ + bg = 0 . (76)

Moreover, we have

g(x) =
√
b
I2(2

√
b(1− x))

(1− x)I1(2
√
b)

(x ∈ R \ {1}) , (77)*

E∗fac(zb0) = lim
x→1

g(x) =

√
b3

2I1(2
√
b)
, (78)

Efac(zb0) = g(−1) =
√
b
I2(2
√

2b)

2I1(2
√
b)
. (79)
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(78) follows from (77) using the limit

lim
x→1

I2(2
√
b(1− x))

1− x
=

b

2
,

which can be obtained by replacing x in

Iµ(x) =
( x

2

)µ ∞∑
k=0

1

k! Γ(µ+ k + 1)

( x
2

)2k
by 2

√
b(1− x).

Corollary 3. For b = 1 we have

E∗fac(z) =
1

2I1(2)
= 0.314339 . . . , (80)

Efac(z) =
I2(2
√

2)

2I1(2)
= 0.583891 . . . . (81)

The exponential generating function g(x) on the right side in (69) is a Taylor expansion around the point
x = 0. However, the expansion of this function around the point infinity is also particularly interesting.
We give this expansion in the following theorem.

Theorem 5. For positive increasing x > 1 we have the asymptotic expansion

g(x) =

√√
b

π
·
( sin

(
5π/4 + 2

√
b(x− 1)

)
I1(2
√
b)x5/4

+
15

16
·

cos
(

5π/4 + 2
√
b(x− 1)

)
I1(2
√
b)x7/4

)
+O

(
x−9/4

)
. (82)*

For b = 1 there are rational numbers qm,1 and qm,2 such that we have for all real numbers x > 1 the series

g(x) =
1√

πI1(2)

∞∑
m=1

( qm,1

xm+1/4
sin
( 5π

4
+ 2
√
x− 1

)
+

qm,2

xm+3/4
cos
( 5π

4
+ 2
√
x− 1

))
. (83)*

In particular, q1,1 = 1 and q1,2 = 15/16.

We obtain a corollary from Theorem 4 and Theorem 5.

Corollary 4. We have

lim
x→∞

g(x) = lim
x→∞

∞∑
m=0

(zb0qm − pm)
xm

m!
= 0 , (84)

∫ ∞
0

g(x) dx = lim
x→∞

∞∑
m=1

(zb0qm−1 − pm−1)
xm

m!
= 1 . (85)

Moreover, for every ε > 0 and sufficiently large x > 1 we have∣∣x5/4g(x)
∣∣ < 4

√
b√
π
· 1

I1(2
√
b)

+ ε , (86)

where the numerical constant
4
√
b√
π
· 1

I1(2
√
b)

(87)

is best-possible.

Now we turn to the function f(x). Again, we allow arbitrary integers a ≥ 0 and b ≥ 1 and we state
our results for f(x) in Theorem 6 and Theorem 7 without proofs. Also for these theorems only standard
methods of real analysis are used.
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Theorem 6. The function f(x) satisfies the differential equation

x2f ′ +
(
bx2 + (a+ 2)x− 1

)
f = bx− zba + a+ 1 .

Moreover, we have

f(x) =
1

xa+2ebx+1/x

( ∫ x

1

(
bt− zba + a+ 1

)
taebt+1/t dt+ eb+1E∗(zba)

)
(x > 0)

and

f(x) =
1

xa+2ebx+1/x

(
−
∫ −1
x

(
bt− zba + a+ 1

)
taebt+1/t dt+ (−1)ae−b−1E(zba)

)
(x < 0) .

The function e1/t is analytical for every real number t except t = 0. Therefore, we have in Theorem 6
no common formula for all real numbers x. For x = 0, the limit is given by

f(0) = lim
ε→0+

− 1

εa+2ebε+1/ε

( ∫ 1

ε

(
bt− zba + a+ 1

)
taebt+1/t dt

)
= zbaq0 − p0 = zba − a− 1 .

We end the listing of results with a theorem for an exponential sum, which becomes an error sum for
minor convergents of zb0 when b = 1.

Theorem 7. Let a = 0, b ≥ 1, and k ∈ N. Moreover, let Pk,m := kpm+1 + pm and Qk,m := kqm+1 + qm,

where pm/qm are the convergents of zb0 given by (65) and (66). Then we have

h(k) :=

∞∑
m=0

(k + 1)m

m!
· (zb0Qk,m − Pk,m) =

b

i
√
k
· I
′
2(2i
√
bk)

I1(2
√
b)

,

∫ k

0
h(t) dt =

√
b · J2(−2

√
bk)

I1(2
√
b)

.

Example. For k = 1 we obtain from Theorem 7,
∞∑
m=0

2m

m!
·
(
zb0(qm+1 + qm)− (pm+1 + pm)

)
=

bI ′2(2i
√
b)

iI1(2
√
b)

=
b
(
I1(2i

√
b) + I3(2i

√
b)
)

2iI1(2
√
b)

=
b
(
J1(2
√
b)− J3(2

√
b)
)

2I1(2
√
b)

.

In the second last step, we first apply formula (75) with µ = 2, and then (72) in order to obtain the final
real expression.

4.3. Proofs. We prove the outstanding parts in this Section (apart from Theorems 6 and 7), skipping
the intermediate computations performed with MAPLE. In some places, however, we give individual
intermediate steps in the procedure even for the MAPLE calculations.

Proof of (76) and (77) in Theorem 4. Let

y(x) :=

∞∑
m=0

um
m!

xm , (88)

where the integers um are given recursively by (65) and (66) with a = 0. Differentiating twice, we obtain
the series

y′(x) =

∞∑
m=1

um

(m− 1)!
xm−1 and y′′(x) =

∞∑
m=2

um

(m− 2)!
xm−2 . (89)
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With an index shift on the right of (89) and application of the recursion formula (65), we obtain

y′′(x) =

∞∑
m=0

um+2

m!
xm =

∞∑
m=2

um
(m− 2)!

xm−1 + 3
∞∑
m=1

um
(m− 1)!

xm−1 + b
∞∑
m=0

um
m!

xm

= xy′′(x) + 3y′(x) + by(x) .

The last identity follows from (88) and (89), and (76) is proven. MAPLE calculates the general solution
of the differential equation (76) as

y(x) = C1 ·
J2
(
2
√
b(x− 1)

)
x− 1

+ C2 ·
Y2
(
2
√
b(x− 1)

)
x− 1

(90)*

with arbitrary constants C1 and C2. We now calculate the special solutions y(x) = g1(x) and y(x) = g2(x),
once for um = pm and another time for um = qm. In any case we obtain the two constants C1 and C2

from the initial conditions g1(0) = p0 = 1, g′1(0) = p1 = b + 2, g2(0) = q0 = 1, and g′2(0) = q1 = 2. All
results are entered into (90) and then merged to form the function g(x) = zb0g2(x) − g1(x), where zb0 is
expressed by (70) with a = 0. After significant simplifications of the resulting terms, MAPLE calculates
the final result given in (77) on the right side of the formula. �

Proof of Corollary 4. There is nothing to prove for (84), (86), and (87), because the assertions follow

directly from Theorem 5. In particular, the principal term in the asymptotic expansion of x5/4g(x) in (82)
takes it’s maximum and minimum values for x satisfying

5π

4
+ 2
√
b(x− 1) =

π

2
+ kπ (k = 1, 2, 3, . . . ) .

It remains to prove (85). Let β := 2
√
b and z :=

√
1− x. Then, by (77),

E :=

∫ ∞
0

g(x) dx =

√
b

I1(β)

∫ ∞
0

I2(βz)

z2
dx . (91)

Next, we apply formula (74) for µ = 1 and so it takes the form

I2(βz) =
z

β

d

dz

( I1(βz)
z

)
.

Moreover, we have
dz

dx
= − 1

2
√

1− x
= − 1

2z
, or dx = −2z dz .

Overall, the integral in (91) can then be transformed as follows,

E =

√
b

I1(β)

∫ ∞
0

1

βz

d

dz

( I1(βz)
z

)
dx =

√
b

I1(β)

∫ i∞

1

−2z

βz

d

dz

( I1(βz)
z

)
dz

=
−1

I1(β)

∫ i∞

1
d
( I1(βz)

z

)
=
−1

I1(β)

[ I1(βz)
z

]z=i∞
z=1

(72)
=

−1

I1(β)

(
lim
t→∞

J1(βt)

t
− I1(β)

)
(71)
=

−1

I1(β)
·
(
− I1(βt)

)
= 1 .

This proves the identity in (85). �

5. Concluding Comments

The results of this paper represent ideas born from the early correspondences of the authors. Further
generalizations, to include a study of both

Ia/b(2/b)

Ia/b+1(2/b)
=
[
a+ kb

]∞
k=0

and zba =
√
b
Ia(2
√
b)

Ia+1(2
√
b)

= a+ 1 +
b|
|a+ 2

+
b|
|a+ 3

+ · · · ,
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are forthcoming.
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